Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Mol Mutagen ; 62(9): 512-525, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34775645

RESUMEN

We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Etopósido/efectos adversos , Animales , Daño del ADN , Genómica , Humanos
2.
Environ Mol Mutagen ; 62(5): 293-305, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34089278

RESUMEN

A genotoxic carcinogen, N-nitrosodimethylamine (NDMA), was detected as a synthesis impurity in some valsartan drugs in 2018, and other N-nitrosamines, such as N-nitrosodiethylamine (NDEA), were later detected in other sartan products. N-nitrosamines are pro-mutagens that can react with DNA following metabolism to produce DNA adducts, such as O6 -alkyl-guanine. The adducts can result in DNA replication miscoding errors leading to GC>AT mutations and increased risk of genomic instability and carcinogenesis. Both NDMA and NDEA are known rodent carcinogens in male and female rats. The DNA repair enzyme, methylguanine DNA-methyltransferase can restore DNA integrity via the removal of alkyl groups from guanine in an error-free fashion and this can result in nonlinear dose responses and a point of departure or "practical threshold" for mutation at low doses of exposure. Following International recommendations (ICHM7; ICHQ3C and ICHQ3D), we calculated permissible daily exposures (PDE) for NDMA and NDEA using published rodent cancer bioassay and in vivo mutagenicity data to determine benchmark dose values and define points of departure and adjusted with appropriate uncertainty factors (UFs). PDEs for NDMA were 6.2 and 0.6 µg/person/day for cancer and mutation, respectively, and for NDEA, 2.2 and 0.04 µg/person/day. Both PDEs are higher than the acceptable daily intake values (96 ng for NDMA and 26.5 ng for NDEA) calculated by regulatory authorities using simple linear extrapolation from carcinogenicity data. These PDE calculations using a bench-mark approach provide a more robust assessment of exposure limits compared with simple linear extrapolations and can better inform risk to patients exposed to the contaminated sartans.


Asunto(s)
Aductos de ADN , Exposición a Riesgos Ambientales/análisis , Mutación , Nitrosaminas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Carcinógenos/toxicidad , Femenino , Masculino , Ratas
3.
Environ Mol Mutagen ; 61(1): 114-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603995

RESUMEN

In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Rutas de Resultados Adversos , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Aneuploidia , Animales , Aurora Quinasa A/antagonistas & inhibidores , Rotura Cromosómica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad/métodos , Mutación/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-31699343

RESUMEN

We live in an era of 'big data', where the volume, velocity, and variety of the data being generated is increasingly influencing the way toxicological sciences are practiced. With this in mind, a workgroup was formed for the 2017 International Workshops on Genotoxicity Testing (IWGT) to consider the use of high information content data in genetic toxicology assessments. Presentations were given on adductomics, global transcriptional profiling, error-reduced single-molecule sequencing, and cellular phenotype-based assays, which were identified as methodologies that are relevant to present-day genetic toxicology assessments. Presenters and workgroup members discussed the state of the science for these methodologies, their potential use in genetic toxicology, current limitations, and the future work necessary to advance their utility and application. The session culminated with audience-assisted SWOT (strength, weakness, opportunities, and threats) analyses. The summary report described herein is structured similarly. A major conclusion of the workgroup is that while conventional regulatory genetic toxicology testing has served the public well over the last several decades, it does not provide the throughput that has become necessary in modern times, and it does not generate the mechanistic information that risk assessments ideally take into consideration. The high information content assay platforms that were discussed in this session, as well as others under development, have the potential to address aspect(s) of these issues and to meet new expectations in the field of genetic toxicology.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Animales , Macrodatos , Línea Celular , Aductos de ADN/análisis , Código de Barras del ADN Taxonómico/métodos , Daño del ADN , Minería de Datos , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas/métodos , Metaanálisis como Asunto , Ratones , Pruebas de Mutagenicidad/normas , Fenotipo , Imagen Individual de Molécula , Toxicología/métodos , Transcriptoma
5.
Artículo en Inglés | MEDLINE | ID: mdl-30744809

RESUMEN

A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.


Asunto(s)
Médula Ósea/efectos de los fármacos , Colon/efectos de los fármacos , Ensayo Cometa/métodos , Hígado/efectos de los fármacos , Mutágenos/toxicidad , Mutación , Estómago/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Daño del ADN , Femenino , Masculino , Ratones , Pruebas de Micronúcleos , Ratas
6.
Artículo en Inglés | MEDLINE | ID: mdl-29307374

RESUMEN

The recent revisions of the Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines emphasize the importance of historical negative controls both for data quality and interpretation. The goal of a HESI Genetic Toxicology Technical Committee (GTTC) workgroup was to collect data from participating laboratories and to conduct a statistical analysis to understand and publish the range of values that are normally seen in experienced laboratories using TK6 cells to conduct the in vitro micronucleus assay. Data from negative control samples from in vitro micronucleus assays using TK6 cells from 13 laboratories were collected using a standard collection form. Although in some cases statistically significant differences can be seen within laboratories for different test conditions, they were very small. The mean incidence of micronucleated cells/1000 cells ranged from 3.2/1000 to 13.8/1000. These almost four-fold differences in micronucleus levels cannot be explained by differences in scoring method, presence or absence of exogenous metabolic activation (S9), length of treatment, presence or absence of cytochalasin B or different solvents used as vehicles. The range of means from the four laboratories using flow cytometry methods (3.7-fold: 3.5-12.9 micronucleated cells/1000 cells) was similar to that from the nine laboratories using other scoring methods (4.3-fold: 3.2-13.8 micronucleated cells/1000 cells). No laboratory could be identified as an outlier or as showing unacceptably high variability. Quality Control (QC) methods applied to analyse the intra-laboratory variability showed that there was evidence of inter-experimental variability greater than would be expected by chance (i.e. over-dispersion). However, in general, this was low. This study demonstrates the value of QC methods in helping to analyse the reproducibility of results, building up a 'normal' range of values, and as an aid to identify variability within a laboratory in order to implement processes to maintain and improve uniformity.


Asunto(s)
Núcleo Celular/genética , Proyectos de Investigación/normas , Línea Celular , Humanos , Micronúcleos con Defecto Cromosómico , Pruebas de Micronúcleos , Control de Calidad
7.
Environ Mol Mutagen ; 58(3): 146-161, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28370322

RESUMEN

We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow® DNA Damage Kit-p53, γH2AX, Phospho-Histone H3. For these experiments, seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and nongenotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hr. At 4 and 24 hr, cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all interlaboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or nongenotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals' predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. Environ. Mol. Mutagen. 58:146-161, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Daño del ADN , Citometría de Flujo/métodos , Laboratorios , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Aneugénicos/toxicidad , Animales , Técnicas de Cultivo de Célula , Histonas/genética , Humanos , Laboratorios/normas , Modelos Logísticos , Fosforilación , Proyectos Piloto , Reproducibilidad de los Resultados , Robótica , Sensibilidad y Especificidad , Proteína p53 Supresora de Tumor/genética
8.
Environ Mol Mutagen ; 58(5): 284-295, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28266061

RESUMEN

The Organization for Economic Cooperation and Development (OECD) recently revised the test guidelines (TGs) for genetic toxicology. This article describes the main issues addressed during the revision process, and the new and consistent recommendations made in the revised TGs for: (1) demonstration of laboratory proficiency; (2) generation and use of robust historical control data; (3) improvement of the statistical power of the tests; (4) selection of top concentration for in vitro assays; (5) consistent data interpretation and determination of whether the result is clearly positive, clearly negative or needs closer consideration; and, (6) consideration of 3R's for in vivo assay design. The revision process resulted in improved consistency among OECD TGs (including the newly developed ones) and more comprehensive recommendations for the conduct and the interpretation of the assays. Altogether, the recommendations made during the revision process should improve the efficiency, by which the data are generated, and the quality and reliability of test results. Environ. Mol. Mutagen. 58:284-295, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Guías como Asunto , Pruebas de Mutagenicidad/normas , Animales , Humanos
9.
Environ Mol Mutagen ; 58(5): 264-283, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27650663

RESUMEN

For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic or germ cells. The outline of a flexible approach and associated considerations are presented in a series of nine steps, some of which can occur in parallel, which was developed through a collaborative effort by leading genetic toxicologists from academia, government, and industry through the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC). The ultimate goal is to provide quantitative data to model the potential risk levels of substances, which induce genomic damage contributing to human adverse health outcomes. Any good risk assessment begins with asking the appropriate risk management questions in a planning and scoping effort. This step sets up the problem to be addressed (e.g., broadly, does genomic damage need to be addressed, and if so, how to proceed). The next two steps assemble what is known about the problem by building a knowledge base about the substance of concern and developing a rational biological argument for why testing for genomic damage is needed or not. By focusing on the risk management problem and potential genomic damage of concern, the next step of assay(s) selection takes place. The work-up of the problem during the earlier steps provides the insight to which assays would most likely produce the most meaningful data. This discussion does not detail the wide range of genomic damage tests available, but points to types of testing systems that can be very useful. Once the assays are performed and analyzed, the relevant data sets are selected for modeling potential risk. From this point on, the data are evaluated and modeled as they are for any other toxicology endpoint. Any observed genomic damage/effects (or genetic event(s)) can be modeled via a dose-response analysis and determination of an estimated PoD. When a quantitative risk analysis is needed for decision making, a parallel exposure assessment effort is performed (exposure assessment is not detailed here as this is not the focus of this discussion; guidelines for this assessment exist elsewhere). Then the PoD for genomic damage is used with the exposure information to develop risk estimations (e.g., using reference dose (RfD), margin of exposure (MOE) approaches) in a risk characterization and presented to risk managers for informing decision making. This approach is applicable now for incorporating genomic damage results into the decision-making process for assessing potential adverse outcomes in chemically exposed humans and is consistent with the ILSI HESI Risk Assessment in the 21st Century (RISK21) roadmap. This applies to any substance to which humans are exposed, including pharmaceuticals, agricultural products, food additives, and other chemicals. It is time for regulatory bodies to incorporate the broader knowledge and insights provided by genomic damage results into the assessments of risk to more fully understand the potential of adverse outcomes in chemically exposed humans, thus improving the assessment of risk due to genomic damage. The historical use of genomic damage data as a yes/no gateway for possible cancer risk has been too narrowly focused in risk assessment. The recent advances in assaying for and understanding genomic damage, including eventually epigenetic alterations, obviously add a greater wealth of information for determining potential risk to humans. Regulatory bodies need to embrace this paradigm shift from hazard identification to quantitative analysis and to incorporate the wider range of genomic damage in their assessments of risk to humans. The quantitative analyses and methodologies discussed here can be readily applied to genomic damage testing results now. Indeed, with the passage of the recent update to the Toxic Substances Control Act (TSCA) in the US, the new generation testing strategy for genomic damage described here provides a regulatory agency (here the US Environmental Protection Agency (EPA), but suitable for others) a golden opportunity to reexamine the way it addresses risk-based genomic damage testing (including hazard identification and exposure). Environ. Mol. Mutagen. 58:264-283, 2017. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Asunto(s)
Genómica/métodos , Pruebas de Mutagenicidad/tendencias , Animales , Salud Ambiental , Humanos , Modelos Teóricos , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Medición de Riesgo
10.
Mutagenesis ; 31(4): 375-84, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27000792

RESUMEN

The ICH S6(R1) recommendations on safety evaluation of biotherapeutics have led to uncertainty in determining what would constitute a cause for concern that would require genotoxicity testing. A Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee Workgroup was formed to review the current practice of genotoxicity assessment of peptide/protein-related biotherapeutics. There are a number of properties of peptide/protein-related biotherapeutics that distinguish such products from traditional 'small molecule' drugs and need to be taken into consideration when assessing whether genotoxicity testing may be warranted and if so, how to do it appropriately. Case examples were provided by participating companies and decision trees were elaborated to determine whether and when genotoxicity evaluation is needed for peptides containing natural amino acids, non-natural amino acids and other chemical entities and for unconjugated and conjugated proteins. From a scientific point of view, there is no reason for testing peptides containing exclusively natural amino acids irrespective of the manufacturing process. If non-natural amino acids, organic linkers and other non-linker chemical components have already been tested for genotoxicity, there is no need to re-evaluate them when used in different peptide/protein-related biotherapeutics. Unless the peptides have been modified to be able to enter the cells, it is generally more appropriate to evaluate the peptides containing the non-natural amino acids and other non-linker chemical moieties in vivo where the cleavage products can be formed. For linkers, it is important to determine if exposure to reactive forms are likely to occur and from which origin. When the linkers are anticipated to be potential mutagenic impurities they should be evaluated according to ICH M7. If linkers are expected to be catabolic products, it is recommended to test the entire conjugate in vivo, as this would ensure that the relevant 'free' linker forms stemming from in vivo catabolism are tested.


Asunto(s)
Guías como Asunto , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Péptidos/toxicidad , Animales , Humanos , Mutágenos/efectos adversos , Péptidos/efectos adversos , Péptidos/uso terapéutico
11.
Artículo en Inglés | MEDLINE | ID: mdl-26232254

RESUMEN

Accumulated evidence has shown that in vitro mammalian cell genotoxicity assays produce high frequencies of "misleading" positive results, i.e. predicted hazard is not confirmed in in vivo and/or carcinogenicity studies [1], raising the question of relevance to human risk assessment. A recent study of micronucleus (MN) induction [2] showed that commonly used p53-deficient rodent cell lines (CHL, CHO and V79) gave a higher frequency of "misleading" positive results with 9 non-DNA reactive, Ames-negative and in vivo negative chemicals [3] than human p53-competent cells (blood lymphocytes, TK6 and HepG2 cell lines). This raised the question of whether these differences were due to p53 status or species origin. This present study compared human versus mouse and p53-competent versus p53-mutated function. The same 9 chemicals were tested for induction of MN in mouse lymphoma L5178Y (mutated p53), human TK6 (functional p53) and WIL2-NS (TK6 related, with mutated p53) cells. Six chemicals provided clear positive increases in MN frequency in at least one cell type. L5178Y cells yielded clear positive responses with more chemicals than either TK6 or WIL2-NS, indicating origin rather than p53 functionality was most relevant. Apoptosis induction (measured via caspase-3/7) was also investigated with clear differences in the timing and extent of apoptosis induction between mouse and human cells noted. With curcumin in TK6 cells, induction of caspase-3/7 activity coincided with MN induction, whereas for L5178Y cells, MN induction occurred in the absence of increased caspase activity. By contrast, with MMS in TK6 cells, MN induction preceded increased caspase-3/7 activity. These data suggest that MN induction by "misleading positive" genotoxins in p53-competent human cell lines may result from apoptosis, whereas in p53-defective rodent cells such as L5178Y, MN induction may be independent of apoptosis.


Asunto(s)
Apoptosis/genética , Pruebas de Micronúcleos/métodos , Mutación , Proteína p53 Supresora de Tumor/genética , Acrilatos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Clorofenoles/farmacología , Curcumina/farmacología , Citocalasina B/farmacología , Daño del ADN , Relación Dosis-Respuesta a Droga , Eugenol/farmacología , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Nitrofenoles/farmacología , Compuestos Orgánicos/farmacología , Anhídridos Ftálicos/farmacología , Galato de Propilo/farmacología , Reproducibilidad de los Resultados , Resorcinoles/farmacología , ortoaminobenzoatos/farmacología
12.
Artículo en Inglés | MEDLINE | ID: mdl-25953400

RESUMEN

This report summarizes the discussion, conclusions, and points of consensus of the IWGT Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (QWG) based on a meeting in Foz do Iguaçu, Brazil October 31-November 2, 2013. Topics addressed included (1) the need for quantitative dose-response analysis, (2) methods to analyze exposure-response relationships & derive point of departure (PoD) metrics, (3) points of departure (PoD) and mechanistic threshold considerations, (4) approaches to define exposure-related risks, (5) empirical relationships between genetic damage (mutation) and cancer, and (6) extrapolations across test systems and species. This report discusses the first three of these topics and a companion report discusses the latter three. The working group critically examined methods for determining point of departure metrics (PoDs) that could be used to estimate low-dose risk of genetic damage and from which extrapolation to acceptable exposure levels could be made using appropriate mode of action information and uncertainty factors. These included benchmark doses (BMDs) derived from fitting families of exponential models, the No Observed Genotoxic Effect Level (NOGEL), and "threshold" or breakpoint dose (BPD) levels derived from bilinear models when mechanistic data supported this approach. The QWG recognizes that scientific evidence suggests that thresholds below which genotoxic effects do not occur likely exist for both DNA-reactive and DNA-nonreactive substances, but notes that small increments of the spontaneous level cannot be unequivocally excluded either by experimental measurement or by mathematical modeling. Therefore, rather than debating the theoretical possibility of such low-dose effects, emphasis should be placed on determination of PoDs from which acceptable exposure levels can be determined by extrapolation using available mechanistic information and appropriate uncertainty factors. This approach places the focus on minimization of the genotoxic risk, which protects against the risk of the development of diseases resulting from the genetic damage. Based on analysis of the strengths and weaknesses of each method, the QWG concluded that the order of preference of PoD metrics is the statistical lower bound on the BMD > the NOGEL > a statistical lower bound on the BPD. A companion report discusses the use of these metrics in genotoxicity risk assessment, including scaling and uncertainty factors to be considered when extrapolating below the PoD and/or across test systems and to the human.


Asunto(s)
ADN , Modelos Genéticos , Mutágenos/análisis , Mutágenos/toxicidad , Mutación , Neoplasias , ADN/genética , ADN/metabolismo , Humanos , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Neoplasias/inducido químicamente , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Medición de Riesgo
13.
Artículo en Inglés | MEDLINE | ID: mdl-25953401

RESUMEN

This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clastogenic damage for agents thought to act via a genotoxic mechanism, but that the correlation is limited due to an inadequate number of cases in which mutation and cancer can be compared at a sufficient number of doses in the same target tissues of the same species and strain exposed under directly comparable routes and experimental protocols.


Asunto(s)
Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Mutágenos/toxicidad , Neoplasias , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Neoplasias/inducido químicamente , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos/efectos de los fármacos , Medición de Riesgo
14.
Environ Mol Mutagen ; 56(3): 277-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25482136

RESUMEN

Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Animales , District of Columbia , Epigénesis Genética/efectos de los fármacos , Genómica/métodos , Humanos , Medición de Riesgo
15.
Mutat Res Genet Toxicol Environ Mutagen ; 775-776: 55-68, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25435356

RESUMEN

Positive results in the Ames test correlate well with carcinogenic potential in rodents. This correlation is not perfect because mutations are only one of many stages in tumour development. Also, situations can be envisaged where the mutagenic response may be specific to the bacteria or the test protocol, e.g., bacterial-specific metabolism, exceeding a detoxification threshold, or the induction of oxidative damage to which bacteria may be more sensitive than mammalian cells in vitro or tissues in vivo. Since most chemicals are also tested for genotoxicity in mammalian cells, the pattern of mammalian cell results may help identify whether Ames-positive results predict carcinogenic or in vivo mutagenic activity. A workshop was therefore organised and sponsored by the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) to investigate this further. Participants presented results from other genotoxicity tests with Ames-positive compounds. Data came from published, regulatory agency, and industry sources. The question was posed whether negative results in mammalian cell tests were associated with absence of carcinogenic or in vivo genotoxic activity despite a positive Ames test. In the limited time available, the presented data were combined and an initial analysis suggested that the association of negative in vitro mammalian cell test results with lack of in vivo genotoxic or carcinogenic activity could have some significance. Possible reasons why a positive Ames test may not be associated with in vivo activity and what additional investigations/tests might contribute to a more robust evaluation were discussed. Because a considerable overlap was identified among the different databases presented, it was recommended that a consolidated database be built, with overlapping chemicals removed, so that a more robust analysis of the predictive capacity for potential carcinogenic and in vivo genotoxic activity could be derived from the patterns of mammalian cell test results obtained for Ames-positive compounds.


Asunto(s)
Carcinógenos/toxicidad , Mutágenos/toxicidad , Pruebas de Toxicidad/tendencias , Animales , Daño del ADN/efectos de los fármacos , Bases de Datos Factuales , Europa (Continente) , Humanos , Técnicas In Vitro , Roedores , Pruebas de Toxicidad/métodos
16.
Artículo en Inglés | MEDLINE | ID: mdl-25435358

RESUMEN

In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by the ICH S2(R1) guideline. This paper summarizes a survey suggested by the Safety Working Party of European Medicines Agency (EMA), and conducted by the European Federation of Pharmaceutical Industries and Associations (EFPIA) to investigate the experience among European pharmaceutical companies by conducting the in vivo comet assay for regulatory purpose. A special focus was given on the typology of the obtained results and to identify potential difficulties encountered with the interpretation of study data. The participating companies reported a total of 147 studies (conducted in-house or outsourced) and shared the conclusion on the comet assay response for 136 studies. Most of the studies were negative (118/136). Only about 10% (14/136 studies) of the comet assays showed a positive response. None of the positive comet assay results were clearly associated with organ toxicity indicating that the positive responses are not due to cytotoxic effects of the compound in the tissue examined. The number of comet assays with an equivocal or inconclusive response was rare, respectively <1% (1/147 studies) and 2% (3/147 studies). In case additional information (e.g. repeat assay, organ toxicity, metabolism, tissue exposure) would have been available for evaluation, a final conclusion could most probably have been drawn for most or all of these studies. All (46) negative in vivo comet assays submitted alongside with a negative in vivo micronucleus assay were accepted by the regulatory authorities to mitigate a positive in vitro mammalian cell assay following the current ICH S2 guidance. The survey results demonstrate the robustness of the comet assay and the regulatory acceptance of the current ICH S2 guidance.


Asunto(s)
Ensayo Cometa/métodos , Recolección de Datos , Animales , Ensayo Cometa/estadística & datos numéricos , Daño del ADN , Industria Farmacéutica/organización & administración , Industria Farmacéutica/estadística & datos numéricos , Europa (Continente) , Guías como Asunto , Pruebas de Micronúcleos/métodos , Roedores/genética
17.
Regul Toxicol Pharmacol ; 67(1): 39-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23669331

RESUMEN

Genotoxicity hazard identification is part of the impurity qualification process for drug substances and products, the first step of which being the prediction of their potential DNA reactivity using in silico (quantitative) structure-activity relationship (Q)SAR models/systems. This white paper provides information relevant to the development of the draft harmonized tripartite guideline ICH M7 on potentially DNA-reactive/mutagenic impurities in pharmaceuticals and their application in practice. It explains relevant (Q)SAR methodologies as well as the added value of expert knowledge. Moreover, the predictive value of the different methodologies analyzed in two surveys conveyed in the US and European pharmaceutical industry is compared: most pharmaceutical companies used a rule-based expert system as their primary methodology, yielding negative predictivity values of ⩾78% in all participating companies. A further increase (>90%) was often achieved by an additional expert review and/or a second QSAR methodology. Also in the latter case, an expert review was mandatory, especially when conflicting results were obtained. Based on the available data, we concluded that a rule-based expert system complemented by either expert knowledge or a second (Q)SAR model is appropriate. A maximal transparency of the assessment process (e.g. methods, results, arguments of weight-of-evidence approach) achieved by e.g. data sharing initiatives and the use of standards for reporting will enable regulators to fully understand the results of the analysis. Overall, the procedures presented here for structure-based assessment are considered appropriate for regulatory submissions in the scope of ICH M7.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/química , Mutágenos/toxicidad , Simulación por Computador , Daño del ADN , Contaminación de Medicamentos , Industria Farmacéutica/métodos , Relación Estructura-Actividad Cuantitativa
18.
Environ Mol Mutagen ; 52(9): 685-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21976154

RESUMEN

The Health and Environmental Sciences Institute (HESI), a global branch of the International Life Sciences Institute (ILSI), initiated a project committee entitled "Relevance and Follow-up of Positive Results from In Vitro Genetic Toxicity Testing (IVGT)" with the overall objective of improving the scientific basis for the interpretation of results from genetic toxicology testing. The IVGT committee has also recognized the need to develop follow-up strategies for determining the relevance of in vitro test results to human health, and moving genetic toxicology testing from the sole purpose of hazard identification toward a more quantitative risk assessment approach. In this context, a group of experts evaluated the potential utility of the emerging in vivo mutational assessment model commonly known as the Pig-a gene mutation assay to follow-up positive in vitro genetic toxicology findings and to generate robust dose-response data for quantitative assessment of the in vivo mutagenicity. The IVGT experts participating in this effort represented academia, industry, and government agencies from across the globe and addressed such issues as the optimal sample size and experimental design for generating robust dose-response data. This expert group concluded that the emerging Pig-a gene mutation assay holds great promise as an in vivo mutagenicity assay, either as a stand-alone study or integrated into repeat-dose toxicology studies, and therefore supports further validation of the model.


Asunto(s)
Bioensayo , Proteínas de la Membrana/genética , Pruebas de Mutagenicidad , Animales , Bioensayo/métodos , Bioensayo/normas , Bioensayo/tendencias , Conferencias de Consenso como Asunto , Relación Dosis-Respuesta a Droga , Humanos , Cooperación Internacional , Modelos Genéticos , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Pruebas de Mutagenicidad/tendencias , Mutágenos/toxicidad , Medición de Riesgo
19.
Mutat Res ; 723(2): 87-90, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20933606

RESUMEN

The optimal use of historical control data for the interpretation of genotoxicity results was discussed at the 2009 International Workshop on Genotoxicity Testing (IWGT) in Basel, Switzerland. The historical control working group focused mainly on negative control data although positive control data were also considered to be important. Historical control data are typically used for comparison with the concurrent control data as part of the assay acceptance criteria. Historical control data are also important for providing evidence of the technical competence and familiarization of the assay at any given laboratory. Moreover, historical control data are increasingly being used to aid in the interpretation of genetic toxicity assay results. The objective of the working group was to provide generic advice for historical control data that could be applied to all assays rather than to give assay-specific recommendations. In brief, the recommendations include:


Asunto(s)
Pruebas de Mutagenicidad/métodos , Guías como Asunto , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA